## **CAMBRIDGE INTERNATIONAL EXAMINATIONS**

GCE Advanced Subsidiary Level and GCE Advanced Level

## MARK SCHEME for the May/June 2013 series

## 9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2013 | 9702     | 41    |

## Section A

| 1 | (a) |            | ion of space area / volume<br>ere a mass experiences a force                                                                                                                                                                                                                                                                    | B1<br>B1             | [2] |
|---|-----|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|
|   | (b) | (i)        | force proportional to product of two masses force inversely proportional to the square of their separation <i>either</i> reference to point masses <i>or</i> separation >> 'size' of masses                                                                                                                                     | M1<br>M1<br>A1       | [3] |
|   |     | (ii)       | field strength = $GM/x^2$ or field strength $\propto 1/x^2$<br>ratio = $(7.78 \times 10^8)^2/(1.5 \times 10^8)^2$<br>= 27                                                                                                                                                                                                       | C1<br>C1<br>A1       | [3] |
|   | (c) | (i)        | either centripetal force = $mR\omega^2$ and $\omega = 2\pi / T$<br>or centripetal force = $mv^2 / R$ and $v = 2\pi R / T$<br>gravitational force provides the centripetal force<br>either $GMm / R^2 = mR\omega^2$ or $GMm / R^2 = mv^2 / R$<br>$M = 4\pi^2 R^3 / GT^2$<br>(allow working to be given in terms of acceleration) | B1<br>B1<br>M1<br>A0 | [3] |
|   |     | (ii)       | $M = \{4\pi^2 \times (1.5 \times 10^{11})^3\} / \{6.67 \times 10^{-11} \times (3.16 \times 10^7)^2\}$<br>= 2.0 × 10 <sup>30</sup> kg                                                                                                                                                                                            | C1<br>A1             | [2] |
| 2 | (a) | p, \       | eys the equation $pV$ = constant $\times$ $T$ or $pV$ = $nRT$ / and $T$ explained all values of $p$ , $V$ and $T$ /fixed mass/ $n$ is constant                                                                                                                                                                                  | M1<br>A1<br>A1       | [3] |
|   | (b) | (i)        | $3.4 \times 10^5 \times 2.5 \times 10^3 \times 10^{-6} = n \times 8.31 \times 300$<br>n = 0.34 mol                                                                                                                                                                                                                              | M1<br>A0             | [1] |
|   |     | (ii)       | for total mass/amount of gas $3.9 \times 10^5 \times (2.5 + 1.6) \times 10^3 \times 10^{-6} = (0.34 + 0.20) \times 8.31 \times T$ $T = 360 \text{K}$                                                                                                                                                                            | C1<br>A1             | [2] |
|   | (c) | gas<br>wor | en tap opened<br>passed (from cylinder B) to cylinder A<br>k done <u>on</u> gas in cylinder A (and no heating)<br>nternal energy and hence temperature increase                                                                                                                                                                 | B1<br>M1<br>A1       | [3] |

|   | Pa  | ge 3                                              | Mark Scheme                                                                                                                                                          | Syllabus  | Paper                |     |
|---|-----|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|-----|
|   |     |                                                   | GCE AS/A LEVEL – May/June 2013                                                                                                                                       | 9702      | 41                   |     |
| 3 | (a) | (i) 1.                                            | amplitude = 1.7 cm                                                                                                                                                   |           | A1                   | [1] |
|   |     | 2.                                                | period = 0.36 cm<br>frequency = 1/0.36<br>= 2.8 Hz                                                                                                                   |           | C1<br>A1             | [2] |
|   |     | (ii) a =<br>acc                                   | $(-)\omega^2 x$ and $\omega = 2\pi/T$<br>eleration = $(2\pi/0.36)^2 \times 1.7 \times 10^{-2}$<br>= $5.2 \mathrm{m  s^{-2}}$                                         |           | C1<br>M1<br>A0       | [2] |
|   | (b) |                                                   | straight line, through origin, with negative gradient from $(-1.7 \times 10^{-2}, 5.2)$ to $(1.7 \times 10^{-2}, -5.2)$ not reasonable, do not allow second mark)    |           | M1<br>A1             | [2] |
|   | (c) | $or$ $\frac{1}{2}m\omega^{2}(x)$ $x_{0}^{2} = 2x$ | $\sqrt{2} = 1.7 / \sqrt{2}$                                                                                                                                          | ic energy | B1<br>C1             | [3] |
| 4 | (a) | work do                                           | one moving unit positive charge inity (to the point)                                                                                                                 |           | M1<br>A1             | [2] |
|   | (b) |                                                   | ) kinetic energy = change in potential energy $qV$ leading to $v = (2Vq/m)^{\frac{1}{2}}$                                                                            |           | B1<br>B1             | [2] |
|   | (c) | either                                            | $(2.5 \times 10^5)^2 = 2 \times V \times 9.58 \times 10^7$<br>V = 330 V<br>this is less than 470 V and so 'no'                                                       |           | C1<br>M1<br>A1       | [3] |
|   |     | or                                                | $v = (2 \times 470 \times 9.58 \times 10^7)$<br>$v = 3.0 \times 10^5 \mathrm{m  s^{-1}}$<br>this is greater than $2.5 \times 10^5 \mathrm{m  s^{-1}}$ and so 'no'    |           | (C1)<br>(M1)<br>(A1) |     |
|   |     | or                                                | $(2.5 \times 10^5)^2 = 2 \times 470 \times (q/m)$<br>$(q/m) = 6.6 \times 10^7 \text{C kg}^{-1}$<br>this is less than $9.58 \times 10^7 \text{C kg}^{-1}$ and so 'no' |           | (C1)<br>(M1)<br>(A1) |     |

|   | Page 4 |            | 1           | Mark Scheme Syllabus GCE AS/A LEVEL – May/June 2013 9702 |                                         |                          |                        |                                                                                   | Paper                  |                 |     |
|---|--------|------------|-------------|----------------------------------------------------------|-----------------------------------------|--------------------------|------------------------|-----------------------------------------------------------------------------------|------------------------|-----------------|-----|
| 5 | (a)    |            |             | magnetic                                                 | c) flux nor                             | mal to lo                | ng (stra               | hight) wire carrying a                                                            | 1                      | <b>41</b><br>M1 |     |
|   |        | (cre       | eates)      | ) force pe                                               | r unit lenç                             | gth of 1 N               | l m <sup>−1</sup>      |                                                                                   |                        | A1              | [2] |
|   | (b)    | (i)        | flux        | density                                                  | $= 4\pi \times 10$<br>= $6.6 \times 10$ |                          | < 10 <sup>3</sup> × 3  | 3.5                                                                               |                        | C1<br>A1        | [2] |
|   |        | (ii)       | flux        | linkage                                                  | = 6.6 × 10<br>= 3.0 × 10                |                          | × 10 <sup>-4</sup> ×   | 160                                                                               |                        | C1<br>A1        | [2] |
|   | (c)    | (i)        | •           | uced) e.m<br>nge of (m                                   |                                         |                          |                        |                                                                                   |                        | M1<br>A1        | [2] |
|   |        | (ii)       | e.m.        | .f. = (2<br>= 7.4                                        | $\times$ 3.0 $\times$ 10 $^{-3}$ V      | O <sup>-3</sup> ) / 0.80 | )                      |                                                                                   |                        | C1<br>A1        | [2] |
| 6 | (a)    | (i)        |             | educe pov<br>to eddy o                                   |                                         |                          |                        |                                                                                   |                        | B1<br>B1        | [2] |
|   |        | (ii)       | eithe<br>or | •                                                        | ower loss<br>t power =                  |                          |                        |                                                                                   |                        | B1              | [1] |
|   | (b)    | eith       |             | r.m.s. vol                                               | _                                       |                          | = √2 ×                 |                                                                                   |                        | C1              |     |
|   |        | or         |             | peak volt                                                |                                         |                          | = 340°<br>y coil       | V<br>= 9.0 × √2<br>= 12.7 × (8100/300)                                            |                        | A1<br>(C1)      | [2] |
|   |        |            |             | poak von                                                 | age acro                                | 33 1044                  |                        | = 340 V                                                                           |                        | (A1)            |     |
| 7 | (a)    | (i)        |             | est freque<br>ng rise to                                 | •                                       |                          |                        | m the surface)                                                                    |                        | M1<br>A1        | [2] |
|   |        | (ii)       | E = .       |                                                          | ulopov -                                | - (0 0 v 1               | n- <sup>19</sup> \ / ( | $6.63 \times 10^{-34}$ )                                                          |                        | C1              |     |
|   |        |            | une         | siloid iled                                              |                                         | = (9.0 × 1<br>= 1.4 × 1( |                        | 0.03 × 10 )                                                                       |                        | A1              | [2] |
|   | (b)    | eith<br>or |             |                                                          |                                         |                          |                        | $n \equiv 5.0 \times 10^{14} \text{Hz})$ $n \equiv 3.3 \times 10^{-19} \text{J})$ |                        |                 |     |
|   |        | or         |             |                                                          | 340 nm, <sub> </sub>                    | olatinum                 |                        | 0 nm (and sodium $\lambda_0$                                                      | <sub>0</sub> = 520 nm) | M1<br>A1        | [2] |
|   | (c)    | few        | er ph       | oton has l<br>notons per                                 | r unit time                             | )                        |                        |                                                                                   |                        | M1<br>M1        | 101 |
|   |        | tew        | er ele      | ectrons e                                                | nitted pei                              | r unit time              | 9                      |                                                                                   |                        | A1              | [3] |

|    | Pa  | ige 5 | Mark Scheme                                                                                                                                                            | Syllabus                 | Paper    |     |
|----|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------|-----|
|    |     |       | GCE AS/A LEVEL – May/June 2013                                                                                                                                         | 9702                     | 41       |     |
| 8  | (a) |       | (light) nuclei combine<br>orm a more massive nucleus                                                                                                                   |                          | M1<br>A1 | [2] |
|    | (b) | (i)   | $\Delta m$ = (2.01410 u + 1.00728 u) - 3.01605 u<br>= 5.33 × 10 <sup>-3</sup> u<br>energy = $c^2 \times \Delta m$                                                      |                          | C1<br>C1 |     |
|    |     |       | = $5.33 \times 10^{-3} \times 1.66 \times 10^{-27} \times (3.00 \times 10^{8})^{2}$<br>= $8.0 \times 10^{-13}$ J                                                       |                          | A1       | [3] |
|    |     | (ii)  | speed/kinetic energy of proton and deuterium must be ve<br>so that the nuclei can overcome electrostatic repulsion                                                     | ery large                | B1<br>B1 | [2] |
|    |     |       | Section B                                                                                                                                                              |                          |          |     |
| 9  | (a) | (i)   | light-dependent resistor/LDR                                                                                                                                           |                          | B1       | [1] |
|    |     | (ii)  | strain gauge                                                                                                                                                           |                          | B1       | [1] |
|    |     | (iii) | quartz/piezo-electric crystal                                                                                                                                          |                          | B1       | [1] |
|    | (b) | (i)   | resistance of thermistor decreases as temperature incresetiher $V_{OUT} = V \times R / (R + R_T)$                                                                      | ses                      | M1       |     |
|    |     |       | or current increases and $V_{\text{OUT}} = IR$ $V_{\text{OUT}}$ increases                                                                                              |                          | A1<br>A1 | [3] |
|    |     | (ii)  | either change in $R_{\rm T}$ with temperature is non-linear or $V_{\rm OUT}$ is not proportional to $R_{\rm T}$ / change in $V_{\rm OUT}$ with so change is non-linear | th $R_{T}$ is non-linear | M1<br>A1 | [2] |
| 10 | (a) |       | rpness: how well the edges (of structures) are defined trast: difference in (degree of) blackening between structu                                                     | ires                     | B1<br>B1 | [2] |
|    | (b) | e.g   | scattering of photos in tissue/no use of a collimator/no us large penumbra on shadow/large area anode/wide beam                                                        |                          |          |     |
|    |     |       | large pixel size (any two sensible suggestions, 1 each)                                                                                                                |                          | B2       | [2] |
|    | (c) | (i)   | $I = I_0 e^{-\mu x}$<br>ratio = exp(-2.85 × 3.5) / exp(-0.95 × 8.0)<br>= (4.65 × 10 <sup>-5</sup> ) / (5.00 × 10 <sup>-4</sup> )                                       |                          | C1<br>C1 |     |
|    |     |       | $= (4.65 \times 10^{-4}) / (5.00 \times 10^{-4})$ $= 0.093$                                                                                                            |                          | A1       | [3] |
|    |     | (ii)  | either large difference (in intensities) or ratio much less than 1.0 so good contrast                                                                                  |                          | M1<br>A1 | [2] |
|    |     |       | (answer given in (c)(ii) must be consistent with ratio give                                                                                                            | n in <b>(c)(i)</b> )     |          |     |

| Page 6 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2013 | 9702     | 41    |

11 (a) (i) amplitude of the carrier wave varies M1 (in synchrony) with the displacement of the information signal Α1 [2] (ii) e.g. more than one radio station can operate in same region/less interference enables shorter aerial increased range/less power required/less attenuation less distortion (any two sensible answers, 1 each) B2 [2] (b) (i) frequency = 909 kHz C1 wavelength =  $(3.0 \times 10^8) / (909 \times 10^3)$  $= 330 \, \text{m}$ Α1 [2] **A1** (ii) bandwidth = 18 kHz [1] (iii) frequency = 9000 Hz Α1 [1] **12** (a) for received signal,  $28 = 10 \lg(P / \{0.36 \times 10^{-6}\})$ C1  $P = 2.3 \times 10^{-4} \text{W}$ **A1** [2] **(b)** loss in fibre =  $10 \lg((9.8 \times 10^{-3}) / (2.27 \times 10^{-4}))$ C1 = 16 dB**A1** [2] (c) attenuation per unit length = 16 / 85  $= 0.19 \,\mathrm{dB} \,\mathrm{km}^{-1}$ Α1 [1]